Gamma function

In mathematics, the gamma function (Γ(z)) is an extension of the factorial function to all complex numbers except negative integers. For positive integers, it is defined as
The gamma function is defined for all complex numbers. But it is not defined for negative integers and zero. For a complex number whose real part is not a negative integer, the function is defined by:
Properties
Particular values
Some particular values of the gamma function are:
Pi function
Gauss introduced the Pi function. This is another way of denoting the gamma function. In terms of the gamma function, the Pi function is
so that
for every non-negative integer n.
Applications
Analytic number theory
The gamma function is used to study the Riemann zeta function. A property of the Riemann zeta function is its functional equation:
Bernhard Riemann found a relation between these two functions. This was in 1859 paper "Über die Anzahl der Primzahlen unter einer gegebenen Grösse" ("On the Number of Prime Numbers less than a Given Quantity")
Notes
References
- Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972. (See Chapter 6)
- Template:Cite book
- Emil Artin, "The Gamma Function", in Rosen, Michael (ed.) Exposition by Emil Artin: a selection; History of Mathematics 30. Providence, RI: American Mathematical Society (2006).
- Template:Cite journal
- P. E. Böhmer, ´´Differenzengleichungen und bestimmte Integrale´´, Köhler Verlag, Leipzig, 1939.
- Template:Cite book
- Philip J. Davis, "Leonhard Euler's Integral: A Historical Profile of the Gamma Function," American Mathematical Monthly 66, 849-869 (1959)
- Template:Citation
- O. R. Rocktaeschel, ´´Methoden zur Berechnung der Gammafunktion für komplexes Argument``, University of Dresden, Dresden, 1922.
- Template:Cite book
- Template:Cite book